skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ott, Troy L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mucus plays crucial roles in higher organisms, from aiding fertilization to protecting the female reproductive tract. Here, we investigate how anisotropic organization of mucus affects bacterial motility. We demonstrate by cryo electron micrographs and elongated tracer particles imaging, that mucus anisotropy and heterogeneity depend on how mechanical stress is applied. In shallow mucus films, we observe bacteria reversing their swimming direction without U-turns. During the forward motion, bacteria burrowed tunnels that last for several seconds and enable them to swim back faster, following the same track. We elucidate the physical mechanism of direction reversal by fluorescent visualization of the flagella: when the bacterial body is suddenly stopped by the mucus structure, the compression on the flagellar bundle causes buckling, disassembly and reorganization on the other side of the bacterium. Our results shed light into motility of bacteria in complex visco-elastic fluids and can provide clues in the propagation of bacteria-born diseases in mucus. 
    more » « less